Контрольная работа № 1

Вариант 1

- ▲ 1. Даны прямая а и точка K, которая не лежит на этой прямой. Через точку K проведены прямые m и l, пересекающие прямую a. Докажите, что прямые a, m и l лежат в одной плоскости.
- 2. а) Можно ли провести через середину стороны треугольника прямую, которая не имеет общих точек с другой его стороной?
- б) Поясните ответ.

Образец контрольной работы №2 по геометрии

- ▲ 1. Вершины B и C треугольника ABC лежат в плоскости β . Вершина A ей не принадлежит. Докажите, что прямая, проходящая через середины отрезков AB и AC, параллельна плоскости β .
- 2. Дан треугольник ABC. Плоскость, параллельная прямой AC, пересекает сторону AB в точке A_1 , а сторону BC B точке C_1 . Вычислите длину отрезка BC_1 , если $CC_1 = 20$ см, $A_1C_1:AC=3:7$.
- Э 3. Точка О не принадлежит плоскости равнобедренной трапеции КМРТ (КТ || МР). Как расположены прямые, одна из которых содержит среднюю линию трапеции, а другая середины отрезков ОМ и ОР? Найдите угол между прямой МК и прямой, содержащей середины отрезков ОМ и ОР, если ∠МРТ = 110°.

(Определение тригонометрических функций)

Вариант 1

1. Вычислите:

a)
$$\sin \frac{7\pi}{3}$$
; B) $\operatorname{tg}\left(-\frac{13\pi}{6}\right)$; 6) $\cos \left(-\frac{5\pi}{4}\right)$; r) $\operatorname{ctg} 13.5\pi$.

2. Решите уравнения:

a)
$$\sin t = \frac{1}{2}$$
; 6) $\cos t = -\frac{\sqrt{3}}{2}$.

3. Упростите выражение

ctg
$$t \cdot \sin(-t) + \cos(2\pi - t)$$
.

4. Докажите тождество

$$\frac{\operatorname{ctg}t}{\operatorname{tg}t + \operatorname{ctg}t} = \cos^2 t.$$

5. Вычислите

$$2 \sin 870^{\circ} + \sqrt{12} \cdot \cos 570^{\circ} - tg^2 60^{\circ}$$
.

6. Известно, что $\sin t = \frac{4}{5}$, $\frac{\pi}{2} < t < \pi$.

Вычислите: $\cos t$, tg t, ctg t.

7. Решите неравенство: a)
$$\sin t > \frac{\sqrt{2}}{2}$$
; б) $\cos t > \frac{1}{2}$.

8. Расположите в порядке возрастания числа